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InAs/InAlGaAs quantum dot active layers within microcav-
ity resonators offer the potential of ultra-low-threshold
lasing in the 1.55 μm telecom window. Here, we demon-
strate the first quantum dot microdisk laser with single-
mode emission around 1.55 μm under continuous-wave
optical pumping up to 170 K. The extracted threshold is
as low as 32 μW at 77 K. This result lays the foundation
of an alternative to quantum-well microlasers for low-
threshold and highly compact monolithically integratable
light emitting sources in fiber communication. © 2017
Optical Society of America
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Featured with high quality factor (Q), small mode volume, and
strong optical confinement, whispering-gallery mode (WGM)
semiconductor microdisk (MD) cavities offer the prospect of
realizing low-threshold lasers [1], with great potential for
integration and low-power operation required for large-scale
photonic integrated circuits (PICs) [2,3]. So far, microdisk
lasers incorporating quantum-well and -wire active materials
have demonstrated excellent device performances [4–13].
The combination of MD with self-assembled III–V quantum
dots (QDs) benefits from the carrier localization/confinement
in QDs while minimizing carrier diffusion and surface recom-
bination at the disk sidewall. In the perspective of miniaturized
ultra-low-threshold and temperature-insensitive lasing devices
[14], QD lasing from microdisk structures has been reported
for various material systems [15–18]. To date, the emission
wavelength of QD microdisk lasers (MDLs) ranges from
1300 nm by In(Ga)As/(Al)GaAs [15,16] to 430 nm by
InGaN/GaN [17]. However, few investigations on QD micro-
disk lasing in the C-band range (1530–1565 nm) have been
reported, which is crucial to fiber-optic communications [18].

In this work, we incorporate seven-stack InAs/InAlGaAs quan-
tum dots as the active region in high Q (∼3835) microdisk
cavities with a diameter of 4 μm. Continuous-wave (CW),
single-mode lasing at 1.54 μm was observed at 77 K with a
threshold as low as 32 μW (∼250 W∕cm2). To the best of our
knowledge, this is the first demonstration of lasing behavior
from microdisk cavities incorporating QDs active regions in
the conventional C-band window. These results represent a
significant progress in realizing low-threshold quantum dot
microlasers for transmission in fiber communication and opti-
cal interconnects for dense photonic integration.

The epitaxial growth of the microdisk laser was performed
in an AIX 200/4 metalorganic chemical vapor deposition
(MOCVD) system. Figure 1(a) illustrates the schematic dia-
gram of the fabricated microdisk laser structure. The disk re-
gion consists of seven-layer well-developed InAs QDs separated
by 50 nm In0.51Al0.29Ga0.2As spacers, sandwiched by two
symmetrical 70 nm thick In0.51Al0.49As cladding layers [19].
A uniform QDs distribution with high QD density is shown
in the 1 μm × 1 μm atomic force microscopy (AFM) scan in
Fig. 1(b). The average QD density was counted to be
∼5 × 1010 cm−2, without any obvious large coalesced islands,
indicating minimal defect formation within the QD layers.
To further evaluate the optical potential of these multilayer
QDs, power-dependent microphotoluminescence (μ-PL) at
liquid nitrogen temperature (77 K) was conducted, as depicted
in Fig. 1(c). In the low excitation power regime (10 μW),

Fig. 1. (a) Schematic illustration of the fabricated microdisk struc-
ture showing the epi-layers. (b) AFM image of a single layer QD,
with excellent uniformity and high density. (c) Normalized power-
dependent photoluminescence of the as-grown sample at 77 K.
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ground-state (GS) emission at ∼1.45 μm was identified.
The shoulders appearing at each side of the spectrum suggest
some inhomogeneity of the InAs QDs. With excitation power
increased to ∼1 mW, the first excited state (ES) started to
emerge, together with an inhomogeneous broadening.

Colloidal lithography was adopted to ensure perfect
circularity of the disks. 200 nm SiO2 was deposited onto the
as-grown sample by Plasma Enhanced Chemical Vapor
Deposition (PECVD), serving as hard masks instead of photo-
resist, for reduced mask erosion during the dry-etch step [20],
thus providing a smoother sidewall. 4-μm-diameter silica
beads diluted in isopropyl alcohol (IPA) were dispersed onto
the sample surface by a micropipette. The sample was then rap-
idly dried on a 110°C hotplate, leaving isolated beads adhered
onto the oxide hard mask. Reactive Ion Etching (RIE) was
utilized to transfer the perfectly round pattern to the oxide
in an O2∕CHF3 ambient, followed by silica bead removal with
acetone in an ultrasonic bath. An Inductively Coupled Plasma
(ICP) etch was performed with an Ar and BCl3 mixed gas sys-
tem to reach a depth of ∼1 μm into the epi-structure, exposing
the InP post region. The ICP chamber was maintained at a
pressure of 5 mTorr and an elevated substrate temperature
of 30°C. An imperfect etched sidewall may result in large
scattering loss and nonradiative recombination, hindering
the device from lasing. Therefore, optimized dry etching plays
a key role in obtaining a smooth disk sidewall with a round
shape and a vertical profile. Subsequently, to assure superior
mode confinement in the periphery of the active region, as well
as to maintain a good thermal conductivity from the disk to the
substrate underneath, the InP substrate was laterally etched in
part to form a pedestal, supporting the disk membrane. A
HCl:H2O � 1∶1 solution was used as the highly selective
etchant for forming the pedestal. Finally, the SiO2 hard mask
was removed by a buffered oxide etch (BOE). Figures 2(a) and
2(b) present a 70° tilted scanning electron microscope (SEM)
image of the whole device topology and a close-up view of
the disk sidewall, revealing a steep and smooth sidewall, crucial
to the quality of resonant modes. Figure 2(c) exhibits the
top-down SEM image of the fabricated MDL, demonstrating
its circular geometry. From measurements of the top-down
SEM images, we found that the disk diameter varies from
∼3.5 μm to ∼4.2 μm, because of the size variation of the com-
mercial beads and disk shrinkage introduced by the dry-etch
process.

Lasing characteristics of the fabricated devices were mea-
sured in a confocal μ-PL setup. Samples were mounted in a
cryostat with constant nitrogen gas flow. Individual MDL
was optically pumped by a CW Ar ion laser operating at
514 nm. The focused spot with a diameter of approximately

4 μm was aimed at the edge of the disk. We assume that
∼60% of the power reaching the sample surface was effectively
absorbed, considering multiple absorptions/reflections in the
disk [21,22]. The output emission was collected from the
top surface of a single MDL, dispersed via a monochromator
with an 830 l/mm grating (spectral resolution of 0.11 nm), and
detected by a thermoelectric-cooled InGaAs detector. To assure
the spatial stability of pumping over time, careful alignment
was performed to ensure a maximum output with the same
input at the beginning of each measurement.

Lasing behavior was first characterized at liquid nitrogen
temperature (77 K). Representative single-mode lasing spectra
from a 4 μm disk are demonstrated in Fig. 3(a). At low pump
level, the emission from the InAs QDs in the disk shows a
strong transverse electric (TE)-polarized WGM at a wavelength
of 1534 nm, accompanied by other weak cavity modes. As
pumping power gradually increased, the mode at 1534 nm
dominated and eventually lased. Peaks of higher-order modes
became conspicuous at higher pump levels. No saturation
trend appeared, even for high injection power at three times
the threshold. And a high extinction ratio of ∼24 dB was
observed when the pumping power tripled the threshold power.
Figure 3(b) presents the linear plot of output intensity versus
input power (L–L curve) of the lasing mode, where the pro-
nounced kink signified the onset of lasing. The threshold
was extrapolated to be around 32 μW � 1.3 μW by linear fit-
ting of the L–L curve above threshold. A log–log L–L curve is
shown in Fig. 3(c), showing the transition from spontaneous
emission to stimulated emission until lasing as indicated by
the “S-shape” of the curve. By fitting the experiment data with
rate equations [22–25], the spontaneous emission coupling
factor (β) is extracted to be ∼0.5. The high β value suggests
that a large fraction of spontaneous emission was coupled into
the lasing mode, further favoring the low threshold.

Since the disk was undercut by approximately 1 μm from
the periphery, higher radial-order WGMs were concentrated
spatially closer to disk center and leaked through the InP
pedestal. Only the lowest-order WGMs can be sustained and
oscillate in the periphery. Carriers generated in the periphery of
the microdisk have a much higher chance of radiative recom-
bination and coupling with first-radial-order WGMs, which
possess the highest Q-factors and are the most favorable for
lasing [26,27]. The free spectral range (FSR) of the first-
radial order WGMs can be calculated by Δλ � λ2∕2πrneff �
∼55 nm, where λ is the emission wavelength, r is the disk
radius, and neff is the group effective refractive index. As shown
in Fig. 4(a), the mode spacing between the lasing mode and its
adjacent higher and lower modes in the same radial order are
55.4 nm and 55.8 nm, respectively. This agrees well with the
theoretically predicted result. Meanwhile, the relative intensity
of the resonant mode at 1534 nm exhibits a pronounced
increase from 0.8 × Pth to 1.3 × Pth, illustrating the behavior
near the lasing threshold. Figure 4(b) depicts a bi-Lorenzian
fit to the sub-threshold emission at 0.8 × Pth. The blue line
matches the broad InAs QDs background emission and the
orange line corresponds to the narrow cavity emission. The
inset is an expanded spectrum of the shaded region with a
tri-Lorentzian fit, indicating a full width at half-maximum
(FWHM) of the 1534 nm mode to be 0.4 nm. Hence, the
cold cavity Q-factor of the lasing mode can be extracted to
be ∼3835 at transparency, corresponding to a cavity finesse

Fig. 2. SEM images of a 4 μm microdisk. (a) 70° tilted view of the
whole device. (b) Zoom-in image of disk sidewall, showing vertical pro-
file and smoothness. Seven-stack QDs can be recognized faintly by dif-
ferent gray contrast. (c) Top-down view implying good circularity.
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of F � FSR∕Δλ � 137.5, which is 13 times larger than what
was reported in Ref. [5]. Furthermore, this cold cavity Q-factor
is the highest among other quantum-well microdisk lasers
in the same wavelength range [2,7,8,10,12]. The high quality
factor can be attributed to the smooth sidewall and perfect cir-
cularity of the fabricated disks. Combining the incorporation of
QDs as the lasing medium resulted in extremely low threshold
of the laser.

Temperature characteristics of the 4 μm diameter MDLs
were also studied. Figure 5(a) compares the normalized lasing

spectra above threshold (∼1.3 × Pth) at various temperatures
from 77 to 170 K. The dominant lasing peak red-shifted
with a rate of 0.08 nm/K, which could be explained as the
refractive index change with the increasing temperature [28].
The lasing output intensity showed no temperature quenching,
indicating good temperature reliability. Figure 5(b) plots the
L–L curve as a function of temperature under CW operation,
indicating the increase of threshold by a factor of ∼6 and a
conspicuous decrease of slope efficiency as temperature rises.
Figure 5(c) plots the natural logarithm of threshold power
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Fig. 4. (a) μ-PL spectrum showing transition from sub-threshold emission (0.8 × Pth) to lasing (1.3 × Pth). Output intensity booming can be
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as a function of temperature, from which a characteristic
temperature T 0 � 64 K in the range of 77–150 K and T 0 �
28 K above 150 K can be extracted using Pth�T 2� � Pth�T 1�
exp��T 2 − T 1�∕T 0�. This value is comparable to the reported
T 0 for optically pumped quantum-dot microdisk lasers grown
on the III–V substrates [21,29]. Further enhancement of
temperature characteristics can be anticipated by optimizing
the supporting pedestal diameter to properly balance the heat
sinking and optical confinement.

We believe that smaller diameter microdisks are more likely
to contribute to dramatic improvement in the threshold. This is
attributed to the increased spontaneous emission factor, induced
by the reduced number of modes. However, the larger mode
spacing in smaller diameter disks makes it arduous to overlap
with the background of broad emission from the InAs QDs,
leading to a less efficient decoration of the modes by the photons
[10]. Also, better laser performance can be expected by engi-
neering the optical quality of QDs in the active region.

In conclusion, we have demonstrated the first 1.55 μm
band quantum dot microdisk lasers. Power- and temperature-
dependent microphotoluminescence were performed to inves-
tigate the lasing characteristics. Continuous-wave lasing with a
threshold as low as 32 μW was achieved in the 4 μm diameter
disks at liquid nitrogen temperature. Our results demonstrate
the advantages of combining small mode volume microdisk
cavities with quantum dots, providing better carrier confine-
ment. More significantly, this work marks a major step toward
high-performance on-chip light sources and optical intercon-
nects for dense optoelectronics integration and communication
networks.
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