## Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD

WANG Yong(王勇)<sup>1,2\*\*</sup>, YU Nai-Sen(于乃森)<sup>2</sup>, LI Ming(黎明)<sup>2</sup>, LAU Kei-May(刘纪美)<sup>2</sup>

<sup>1</sup>National Key Lab on High Power Semiconductor Lasers, Changchun University of Science and Technology,

Changchun 130022

<sup>2</sup>Photonics Technology Center, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(Received 27 May 2010)

AlGaN/GaN high electron mobility transistors (HEMTs) are grown on 2-inch Si (111) substrates by MOCVD. The stacked AlGaN/AlN interlayer with different AlGaN thickness and indium surfactant doped is designed and optimized to relieve the tensile stress during GaN epitaxial growth. The top 1.0 µm GaN buffer layer grown on the optimized AlGaN/AlN interlayer shows a crack-free and shining surface. The XRD results show that GaN(002) FWHM is 480 arcsec and GaN(102) FWHM is 900 arcsec. The AGaN/GaN HEMTs with optimized and non-optimized AlGaN/AlN interlayer are grown and processed for comparison and the dc and rf characteristics are characterized. For the dc characteristics of the device with optimized AlGaN/AlN interlayer, maximum drain current density  $I_{dss}$  of 737 mA/mm, peak transconductance  $G_m$  of 185 mS/mm, drain leakage current density  $I_{ds}$  of 1.7 µA/mm, gate leakage current density  $I_{gs}$  of 24.8 µA/mm and off-state breakdown voltage  $V_{BR}$  of 67 V are achieved with  $L_g/W_g/L_{gs}/L_{gd} = 1/10/1/1$  µm. For the small signal rf characteristics of the device with optimized AlGaN/AlN interlayer, current gain cutoff frequency  $f_T$  of 8.3 GHz and power gain cutoff frequency  $f_T$  of 14.5 GHz and  $f_{max}$  of 37.3 GHz is achieved with a reduced gate length of 0.7 µm.

PACS: 71.55.Eq, 71.55.Ak, 73.40.Kp

DOI: 10.1088/0256-307X/28/5/057102

With a wide band gap, high breakdown field, high thermal conductivity, large saturated velocity and excellent electron transport performance, AlGaN/GaN High electron mobility transistors (HEMTs) are very promising in the applications of high-power, highbreakdown voltage,<sup>[1,2]</sup> high-frequency, high speed and high efficiency operation,[3-5] especially in microwave power devices.<sup>[6]</sup> As the substrate for GaN growth, sapphire has the bottleneck of bad thermal conduction, which limits the improvement of power density of the AlGaN/GaN HEMT device and SiC substrates are so expensive that it hinders the application of the GaN material. Therefore, Si is the best alternative substrate for its low cost, good thermal conductivity and integration with the mature Si-based processing techniques.<sup>[7,8]</sup>

Because of the large differences of lattice constants and thermal expansion coefficients between the GaN epilayer and the Si substrate, the high dislocation density and bad stress state exist in the GaN epilayer grown on the Si substrate, which results in the bad GaN quality and cracked surface morphology.<sup>[9–11]</sup> Compared with those on SiC or sapphire substrates, AlGaN/GaN HEMTs grown on Si substrates suffer from poorer crystalline quality, smaller critical-layer thickness and higher buffer leakage current density, which limit their applications.

The performance of AlGaN/GaN HEMT devices is seriously affected by the quality and surface morphology of the GaN buffer layer. In order to improve GaN quality, relieve the tensile stress, increase the critical thickness of continuous GaN buffer layer and obtain crack-free surface morphology, the structure of bottom layers for HEMT growth should be optimized. It was reported<sup>[12–14]</sup> that LT AlN interlayer could be used to relieve the tensile stress in the GaN layer grown on the Si substrate and so as to reduce the cracks in the grown GaN epilayer. In addition, it could also block the spreading of the edge and mixed dislocations from the substrate to the GaN epilayer.

In this work, the stacked AlGaN/AlN interlayer was designed and optimized to relieve the tensile stress during GaN epitaxial growth. The AGaN/GaN HEMTs with optimized and non-optimized Al-GaN/AlN interlayer were grown and processed for comparison and the dc and rf characteristics were characterized.

The AlGaN/GaN HEMTs were grown on Si (111) substrates by low-pressure MOCVD in an Aixtron 2000HT system. Trimethylgallium (TMGa), trimethylaluminum (TMAl), trimethylindim (TMIn) and ammonia (NH<sub>3</sub>) were used as the Ga, Al, In and N precursors, respectively. Biscyclopentadienyl magnesium (Cg<sub>2</sub>Mg) and silane (SiH<sub>4</sub>) were used as the pand n-type doping sources. H<sub>2</sub> or N<sub>2</sub> is served as the carrier gas. The 2-inch Si (111) substrates with high resistivity of more than  $3000 \Omega$ -cm and the thickness of 280 µm were chosen. Before the Si substrates were loaded into the growth chamber of the MOCVD system, they were cleaned by the standard cleaning pro-

<sup>\*\*</sup>Email: eeywang@gmail.com

<sup>© 2011</sup> Chinese Physical Society and IOP Publishing Ltd

cess of Radio Corporation of America (RCA). Prior to growth, the substrates were heated up to 1190°C for  $10 \min$  under the H<sub>2</sub> ambience to remove the native oxide on the surfaces of the Si substrates. Then around 40 nm AlN nucleation layer was grown at 1150°C for initiation of GaN growth on the Si(111) substrates, followed by the  $SiN_x$  mask layer grown at 1160°C on top of the AlN nucleation layers. Then 0.8 µm undoped GaN transition layer was grown at 1170°C by vertical growth on the exposed AlN nucleation layer and lateral overgrowth on the  $SiN_X$  mask layer. After that, the stacked AlGaN/AlN interlayer was grown on the 0.8 µm GaN transition layer to further reduce the tensile stress, with growth temperature of 950°C for AlN and 1150°C for AlGaN. Subsequently, continuous 1.0 µm GaN buffer layer was grown at 1170°C on the AlGaN/AlN interlayer. Finally the HEMT structure was grown on top of the continuous 1.0 µm GaN buffer layer. The typical HEMT structure consists of a 1 nm AlN spacer layer, a 2 nm undoped AlGaN spacer layer, a 15 nm Si-doped carrier supplying layer and a 3 nm undoped cap layer, with Al composition of 30% and modulation-doped Si concentration of  $5 \times 10^{18} \,\mathrm{cm}^{-3}$ .

In order to more effectively release the tensile stress, the stacked AlGaN/AlN interlayer was optimized for growth of the top continuous GaN buffer layer. The bottom 10 nm AlN in the stacked layers was grown with growth temperature of 950°C and growth pressure of 100 mbar and the top AlGaN layer was calibrated with different thickness. The growth temperature and pressure of AlGaN layer were  $1150^{\circ}$ C and 100 mbar, same as those of the AlN nucleation layer, in order to decrease the parasitic reaction be-

ing at low temperature and high pressure. The initially optimized results of AlGaN/AlN interlayer with AlGaN thickness of 500 nm was reported,<sup>[15]</sup> and the optical micrographs, TEM images and Raman spectra of GaN with optimized AlGaN/AlN interlayer (Al-GaN:500 nm) and with non-optimized AlGaN/AlN interlayer (AlGaN:0 nm, namely, only single AlN interlayer) were compared. In this Letter, the stacked AlGaN/AlN interlayer is further optimized and the growth thickness of the AlGaN layer is calibrated with 0 nm (only single AlN interlayer), 125 nm, 250 nm and 500 nm. Afterwards, the indium surfactant is doped in the AlGaN layer to further improve the GaN quality.

AlGaN/GaN HEMT devices with optimized (sample a: 250 nm AlGaN, with indium surfactant doped) and non-optimized (sample b: 500 nm AlGaN, without indium surfactant doped) AlGaN/AlN interlayer were fabricated for comparison. The source and drain ohmic contacts were prepared by evaporating Ti/Al/Ni/Au (20 nm/150 nm/80 nm) multi-layer metals in e-beam evaporator, followed by rapid thermal annealing (RTA) at 850°C for 30 s in N<sub>2</sub> ambient. The gate was defined by contact photolithography and formed by evaporating Ni/Au (50 nm/300 nm) metals for Schottky contacts.

The variation of AlGaN thickness with 0 nm, 125 nm, 250 nm and 500 nm and the effect of indium surfactant on GaN quality of AlGaN/GaN HEMT samples were studied by XRD measurement and the sample surface was observed by the optical microscope. The GaN quality and surface morphology of AlGaN/GaN HEMT samples are shown in Table 1.

Table 1. Comparison of the samples with different thickness of AlGaN interlayer and with and without indium surfactant doped in AlGaN interlayer by XRD measurement.

| Complea                      | AlGaN thickness in      | FWHM of GaN    | FWHM of GaN    | Surface<br>morphology |  |
|------------------------------|-------------------------|----------------|----------------|-----------------------|--|
| Samples                      | stacked interlayer (nm) | (002) (arcsec) | (102) (arcsec) |                       |  |
| Without indium               | 0                       | 564            | 1380           | Cracked               |  |
|                              | 125                     | 534            | 1134           | Crack-free            |  |
| surfactant doped             | 250                     | 510            | 984            | Crack-free            |  |
| Sanassant aspea              | 500                     | 552            | 1248           | Crack-free            |  |
| With indium surfactant doped | 250                     | 480            | 900            | Crack-free            |  |

Table 2. Comparison of RT Hall results of samples (a) and (b).

| Samples                            | $R_s~(\Omega/{ m sq})$ | Mobility $(cm^2/v \cdot s)$ | $N_s \ (10^{13}  {\rm cm}^{-2})$ |
|------------------------------------|------------------------|-----------------------------|----------------------------------|
| (a) AlGaN 250 nm, with In doped    | 302                    | 1160                        | -1.78                            |
| (b) AlGaN 500 nm, without In doped | 426                    | 900                         | -1.65                            |

According to Table 1, the sample without Al-GaN in the stacked AlGaN/AlN interlayer shows the cracked surface<sup>[15]</sup> and the worst GaN quality, while all other samples with AlGaN layer show crack-free surface observed by the optical microscope, which indicate the stacked AlGaN/AlN interlayer can more effectively release the tensile stress and improve the GaN quality. Additionally, the sample with AlGaN thickness of 250 nm has better GaN quality than the samples with 125 nm and 500 nm. Furthermore, the indium surfactant doped in 250 nm AlGaN interlayer further improves the GaN quality compared with the samples without indium surfactant. Thus it can be concluded that the stacked AlGaN/AlN interlayer with indium surfactant doped can more effectively release the tensile stress and improve the GaN quality. Thus the optimized AlGaN/AlN interlayer was achieved with AlGaN thickness of 250 nm and indium surfactant doped.

The mercury-probe capacitance-voltage system was employed to characterize the properties of 2DEG in the AlGaN/GaN HEMTs with optimized (sample a) and non-optimized (sample b) AlGaN/AlN interlayer for comparison. The profiles of capacitance versus voltage (C-V) and concentration versus thickness (n-d) are shown in Figs. 1 and 2. According to the C-V measurement, basically the same HEMT structure with barrier thickness of 20.0 nm and 2DEG concentration of around  $1.0 \times 10^{20} \,\mathrm{cm}^{-3}$  is achieved for samples a and b. However, the pinch-off voltages of samples a and b are different (-3.5 V and -3.3 V, respectively). It indicates the performance of AlGaN/GaN HEMT device is different between samples a and b, due to the different quality and surface morphology of the GaN buffer layer, caused by the different structure

of the stacked  $\rm AlGaN/AlN$  interlayer.

The 2DEG density and mobility of samples a and b  $(7 \,\mathrm{mm} \times 7 \,\mathrm{mm})$  were characterized at room temperature (RT) by the van der Pauw Hall measure-Ohmic contact was prepared using e-beam ment. evaporated Ti/Al/Ni/Au, followed by annealing at  $850^{\circ}$ C for 30 s under N<sub>2</sub> ambient. Table 2 shows the comparison of RT Hall results between samples a and b. According to the Hall results, sample a with optimized AlGaN/AlN interlayer shows higher mobility and higher  $N_s$  than sample b with the non-optimized AlGaN/AlN interlayer, which indicates that the optimized AlGaN/AlN interlayer can improve quality and surface morphology of the GaN buffer layer, so as to effectively reduce the impurity scattering and enhance the mobility and  $N_s$  of AlGaN/GaN HEMT, very consistent with the C-V results.



**Fig. 1.** Mercury-probe C-V profiles of samples (a) and (b).



**Fig. 2.** The 2DEG profiles of samples a and b.





Fig. 5. Gate leakage currents of samples a and b.



**Fig. 3.** The dc  $I_{ds} - V_{ds}$  characteristics of samples a and b.



Fig. 6. Off-state breakdown voltages of samples a and b.

Table 3. Comparison of the dc transfer characteristics of samples (a) and (b).

| Samples | $ \begin{array}{l} I_{\rm dss} \ ({\rm mA/mm}) \\ @ \ V_{gs} = 2.0 \ {\rm V}, \\ @ \ V_{ds} = 10 \ {\rm V} \end{array} $ | $G_m \ ({ m mS/mm})$ | @ V <sub>gs</sub><br>(V) | (V) | $V_{\rm th}$ (V) | $ \begin{array}{c} I_{ds} \; (\mu {\rm A/mm}) \\ @ \; V_{gs} = -8  {\rm V}, \\ @ \; V_{ds} = 6  {\rm V} \end{array} $ | $I_{gs}(\mu A/mm)$<br>@ $V_{gs} = -35 V$ | $\begin{array}{c} V_{\rm BR}~({\rm V})\\ @~I_{ds}=1{\rm mA/mm} \end{array}$ |
|---------|--------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-----|------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|
| (a)     | 737                                                                                                                      | 185                  | -1                       | 6   | -2.6             | 1.7                                                                                                                   | 24.8                                     | 67                                                                          |
| (b)     | 549                                                                                                                      | 148                  | -2                       | 5   | -2.7             | 2.6                                                                                                                   | 700.8                                    | 40                                                                          |

The dc output and transfer characteristics of samples a and b with device dimensions of  $L_g/W_g/L_{gs}/L_{gd} = 1/10/1/1 \,\mu\text{m}$  were measured by using an HP4156A precision semiconductor parameter analyzer. Figures 3–6 show the dc current-voltage  $(I_{ds} - V_{ds})$  characteristics, transfer  $(I_{ds} - V_{gs})$  characteristics, gate leakage currents and off-state breakdown voltages of samples a and b. The detailed dc output and transfer characteristics of samples a and b are shown in Table 3 for comparison.

According to Table 3, sample a has a higher maximum drain current density  $I_{\rm dss}$  than sample b, which is caused by good surface morphology achieved in sample a with optimized AlGaN/AlN interlayer. Additionally, sample a has lower drain leakage current density  $I_{ds}$  and much lower gate leakage current density  $I_{ds}$ 

rent density  $I_{gs}$  than sample b, which is caused by high resistance in the GaN buffer layer with optimized AlGaN/AlN interlayer for sample a. Furthermore, sample a achieves a higher off-state breakdown voltage  $V_{\rm BR}$  than sample b, resulting from good surface morphology and high resistance in GaN buffer layer grown on optimized AlGaN/AlN interlayer. The improved dc results of AlGaN/GaN HEMTs were achieved by using the optimized AlGaN/AlN interlayer, compared with those reported for the same device dimensions.<sup>[16-19]</sup>



Fig. 7. The rf small signal characteristics of sample (a) with device dimensions of  $L_g/W_g/L_{gs}/L_{gd} = 1/100/1/1$  µm.



Fig. 8. The rf small signal characteristics of sample a with device dimensions of  $L_g/W_g/L_{gs}/L_{gd} = 0.7/100/1/1 \,\mu\text{m}$ .

For high frequency characteristics, on-wafer Sparameter measurements of sample a with the optimized AlGaN/AlN interlayer were carried out by using an HP 4142B modular dc source/monitor and an Agilent 8722ES network analyzer with Cascade microwave probes. Sample a with device dimensions of  $L_g/W_g/L_{gs}/L_{gd} = 1/100/1/1 \,\mu\text{m}$  and  $L_g/W_g/L_{gs}/L_{gd} = 0.7/100/1/1 \,\mu\text{m}$  were measured. The rf small signal characteristics of the device are plotted in Figs.7 and 8. The  $f_T$  of 8.3 GHz and  $f_{\text{max}}$  of 19.9 GHz were achieved with dimensions of  $L_g/W_g/L_{gs}/L_{gd} = 1/100/1/1 \,\mu\text{m}$ . Further, high rf performance with  $f_T$  of 14.5 GHz and  $f_{\text{max}}$  of 37.3 GHz was achieved by reducing the gate length to 0.7 µm.

In summary, the stacked AlGaN/AlN interlayer with AlGaN thickness of 250 nm and indium surfactant doped can more effectively release the tensile stress and improve the GaN quality. For the dc characteristics, maximum drain current density of 737 mA/mm, peak transconductance of 185mS/mm, drain leakage current density of  $1.7 \,\mu\text{A/mm}$ , gate leakage current density of 24.8 µA/mm and offstate breakdown voltage of 67 V were achieved with  $L_g/W_g/L_{gs}/L_{gd} = 1/10/1/1 \,\mu\text{m}$ . For the small signal rf characteristics,  $f_T$  of 8.3 GHz and  $f_{\text{max}}$  of 19.9 GHz were achieved with  $L_q/W_q/L_{qs}/L_{qd} = 1/100/1/1 \,\mu\text{m}.$ Furthermore, the best rf performance with  $f_T$  of  $14.5\,\mathrm{GHz}$  and  $f_{\mathrm{max}}$  of  $37.3\,\mathrm{GHz}$  was achieved with a reduced gate length of 0.7 µm. The improved dc and rf characteristics of AlGaN/GaN HEMTs were achieved by using the optimized AlGaN/AlN interlayer.

## References

- Yagi S, Shimizu M, Inada M, Yamamoto Y, Piao G, Okumura H, Yano Y, Akutsu N and Ohashi H 2006 Solid-State Electron. 50 1057
- [2] Ikeda N, Li J, Kato K, Kaya S, Kazama T, Kokawa T, Sato Y, Iwami M, Nomura T, Masuda M and Kato S 2008 Furukawa Rev. 34 17
- [3] Shen L, Coffie R, Buttari D, Heikman S, Chakraborty A, Chini A, Keller S, DenBaars S P and Mishra U K 2004 *IEEE Electron Device Lett.* 25 7
- [4] Boutros K, Regan M, Rowell P, Gotthold D, Birkhahn R and Brar B 2003 IEEE Int. Electron Devices Meeting 1251
- [5] Joshin K, Kikkawa T, Yayashi H, Maniwa T, Yokokawa S, Yokoyama M, Adachi N and Takikawa M A 2003 *IEEE Int. Electron Devices Meeting* **1261**
- [6] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchel A and Stutzmann M 2000 J. Appl. Phys. 87 334
- [7] Umeno M, Egawa T and Ishikawa H 2001 Mater. Sci. Semiconduct. Processing 4 459
- [8] Wu K T, Chang P H, Lien S T and Chen N C 2006 Physica E: Low-dimensional Systems and Nanostructures 32 566
- [9] Weng X, Raghavan S, Acord J D, Jain A, Dickey E C and Redwing J M 2007 J. Cryst. Growth 300 217
- [10] Dadgar A, Veit P, Schulze F and Blasing J 2007 Thin Solid Films 515 4356
- [11] Liu Z, Wang X L, Hu G X, Guo L C, Li J P, Li J M and Zeng Y P 2007 J. Cryst. Growth 298 281
- [12] Raghavan S, Weng X J, Dickey E and Redwing J M 2005 Appl. Phys. Lett. 87 142101
- [13] Reiher A, Blasing J, Dadgar A, Diez A and Krost A 2003 J. Cryst. Growth 248 563
- [14] Dadgar A, Blasing J, Diez A, Alam A, Heuken M, Krost A 2000 Jpn. J. Appl. Phys. 39 L1183
- [15] Wang H, Liang H, Wang Y, NG K W, Deng D M and Lau K M 2010 Chin. Phys. Lett. 27 038103
- [16] Wang M J and Chen K J 2008 IEEE Int. Electron Devices Meeting (IEDM)
- [17] Liu J, Zhou Y G, Zhu J, Cai Y, Lau K M and Chen K J 2007 IEEE Trans. Electron Devices 54 2
- [18] Feng Z H, Cai S J, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 870
- [19] Luo W J, Wang X L, Xiao H L, Wang C M, Ran J X, Guo L C, Li J P, Liu H X, Chen Y L, Yang F H and Li J M 2008 Microelectron. J. 39 1108