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Abstract— We investigate the optical and electrical character-
istics of the GaN-based light emitting diodes (LEDs) grown on
micro- and nano-scale patterned silicon substrate (MPLEDs and
NPLEDs). The transmission electron microscopy images reveal
the suppression of threading dislocation density in InGaN/GaN
structure on nano-pattern substrate due to nano-scale epitaxial
lateral overgrowth. The plan-view and cross-section cathodo
luminescence mappings show less defective and more homoge-
neous active quantum-well region growth on nano-porous sub-
strates. From temperature-dependent photoluminescence (PL)
and low temperature time-resolved PL measurement, NPLEDs
have better carrier confinement and higher radiative recom-
bination rate than MPLEDs. In terms of device performance,
NPLEDs exhibit smaller electroluminescence peak wavelength
blue shift, lower reverse leakage current and decrease in effi-
ciency droop when compared with the MPLEDs. These results
suggest the feasibility of using NPSi for the growth of high quality
and power LEDs on Si substrates.

Index Terms— Light emitting diodes, metal-organic chemical
vapor deposition, nano-scale epitaxial lateral overgrowth, silicon
substrate.
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I. INTRODUCTION

THE wide band gap GaN-based semiconductors have
received enormous attention for various applications,

such as short-haul optical communication, traffic and sig-
nal lights, back lights for liquid-crystal displays, and
indoor/outdoor lightings. Typically, GaN-based light emitting
diodes (LEDs) were grown on sapphire or SiC substrate
by heteroepitaxial techniques in a metal-organic chemical
vapor deposition (MOCVD) system [1]–[3]. However, the low
thermal and electrical conductivities make sapphire less perfect
as a substrate for the GaN epilayers, meanwhile the high price
and mechanical defects hinder SiC substrate’s acceptability in
the LED market. Silicon has been considered as an alternative
substrate material due to its low manufacturing cost, avail-
ability of large size wafers, and good thermal and electrical
conductivities. Thus, many efforts have been dedicated to the
realization of GaN based LEDs on Si substrates [4]–[8]. Even
though good progress has been made, there are still several
problems when using Si substrate for GaN epitaxial layers.
The large lattice mismatch between GaN and Si (almost 17%)
leads to high threading dislocation densities (TDDs) (around
108 − 1010 cm−2) in the subsequent GaN epilayers. The other
major problem is the thermal expansion coefficient difference
(56%) between two materials, which induces a high tensile
stress during the thermal cycling in MOCVD and often results
in cracks and damages of epilayers [9]. To reduce the density
of cracks and threading dislocations of GaN grown on Si,
a number of approaches have been reported, such as using
AlN multilayer combined with graded AlGaN layer as buffer
[10], epitaxial lateral overgrowth of GaN on micro-patterned
Si [11], and nano heteroepitaxial (NHE) lateral overgrowth
of GaN on nanopore array Si [12], etc.. These methods
effectively reduce the tensile stress and thus the crystal qual-
ity of GaN was greatly improved. Recently, our co-workers
reported fabrication of GaN-based device structure on a nano-
scale patterned silicon substrate [13] that shows significant
improvement on reduction of TDDs, surface morphology and
light emission. In the mean time, the optical and electrical
properties of InGaN/GaN MQWs grown on these patterned
silicon substrates have not been fully studied yet. In this paper,
we examine various optical and electrical characteristics of
GaN based LEDs grown on micro and nano-scale patterned
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Fig. 1. Schematic diagram of pore formation at the beginning of the
anodization.

Si substrates (MPLEDs and NPLEDs), and the experimental
results can lead us to believe that NPLED is in general superior
to its micro-scale counterpart.

II. EXPERIMENTS

The micro-scale pattern Si (MPSi) substrate was prepared
into 340μm × 340μm square islands on a 2-inch silicon
substrate. These islands are separated by 3μm deep and
20μm wide trenches, in the 〈110〉 and 〈112〉 directions, and
were patterned by an STS inductively coupled plasma-reactive
ion etching (ICP-RIE) system on 2-inch Si substrate. The
self-ordered anodized aluminum oxide (AAO) procedures are
depicted in Fig. 1. Firstly, a 500 Å thick SiO2 film acting
as the isolation layer was formed by thermal oxidation on a
2-inch Si (111) substrate. After that, 500 Å Ti and 3500 Å
Al were deposited on it one by one using an AST electron-
beam evaporator. The Ti improved the adhesion of the Al
layer and promoted the uniformity of the porous alumina in
the anodization step. The procedure of anodization can be
summarized in the following four steps [13], [14]: first we
deposit a non-conductive oxide layer and submerge the wafer
into the electrolyte. Second, due to the inherent roughness,
the electric field will locally concentrate at the high curvature
points (Step 2). This local high field leads to a field-enhanced
or/and temperature-enhanced dissolution of formed oxide, and
thus, pores grow with the gradually dissolved alumina (Step 3).
When the formation and dissolving of alumina reach an
equilibrium state, a stable growth of pores can be realized,
as shown in step 4.

Finally after the alumina nano-particles were formed, the
oxide and then the underneath semiconductor layer can be
removed by generic etching process (as shown in Fig. 2).
In general, there are some parameters influencing the self-
ordered anodized aluminum oxide (AAO), such as the anodic
voltage, type and concentration of electrolyte, temperature, etc.
[15] Among these factors, the anodic voltage is one of the

3500 Å A1

AAOAAO

AAO

Si (111) substrate Si (111) substrate

Ti
SiO

2

Si (111) substrate

Si (111) substrate

500 Å Ti

Ti
SiO

2

Si (111) substrate

Ti
SiO

2

500 Å SiO
2

Fig. 2. Schematic diagram for preparing the porous Si substrate.

TABLE I

SUBSTRATES USED FOR GROWING GaN LAYERS

Substrate Diameter (nm) Spacing (nm) Depth (μm)
A-1 200 100 1
A-2 120 150 1
A-3 120 150 0.25

most important factors for adjusting inter-pore distance. It is
reported that the inter-pore distance was proportional to the
anodic voltage, and could get the following relation [14],

2.5(nm/V) U ≤ Dint ≤ 2.8(nm/V) U (1)

[16], [17] where Dint is the inter-pore distance, and U is the
applied voltage.

The aforementioned equation (1) can served as a baseline
for the process. However, in different material system, there
should be one or more optimal conditions for the subsequent
material quality. In this work, several designs were carried
out to find out the optimized processes, and we summarize the
physical characteristics in Table 1. Their outcomes of epitaxial
layer quality can be visually distinguished from Fig. 3(a)
to 3(c). When the size of the pore is too large, the coalescence
of GaN layer can not be fully developed due to large pore
diameter to mesa width ratio. If the depth of the pore is too
large, the surface morphology will also be affected badly.
We choose the condition in Fig. 3(c) as the final template
for NPLED because it can deliver the best quality of the
material. In addition to the anodic voltage and timing control,
the common condition of anodization electrolyte was at 6 °C
in 0.3M phosphoric acid for 30min. After anodization, self-
assembled AAO nano arrays were uniformly distributed on the
Si surface. By ICP etching, the AAO pattern was transferred
to the Si substrate. The AAO mask was then removed by wet
etching.

When all AAO steps were carried out successfully, nano-
pore arrays were uniformly distributed on the entire 2-inch Si
substrate with an average nano-pore diameter of 150 nm, inter-
pore distance of 120 nm, and an etched depth of 250 nm. In the
next step, LED structures with In0.08Ga0.92N/GaN MQWs
were grown on this nano-patterned substrate by MOCVD in
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Fig. 3. Opticalmicroscope of GaN layer grown on substrate (a), (b), and (c).
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Fig. 4. Schematic of GaN-based LED structures grown on (a) MPSi and
(b) NPSi.

an Aixtron 2000HT system. The epitaxial structure of the
GaN-based LED overgrowth on MPSi and NPSi substrate is
depicted in Fig. 4. Detailed substrate preparation and growth
procedure for LED on MPSi and NPSi substrate were reported
elsewhere [18], [19].

After the InGaN/GaN structures were grown, we performed
standard LED lithographic process, metallization, and etch
procedure in order to define device mesa and make p/n
contacts of the LED layers. Once the device fabrication is
finished, we engaged four different types of measurements:
cathodo luminescence (CL), photoluminescence (PL), time-
resolved photoluminescence (TRPL) and electroluminescence
(EL). The spatially resolved CL imaging was obtained by
scanning electron microscope (JEOL-7000F SEM system)
with a fixed viewing scale. The temperature dependent PL
measurements were done by a 325 nm He-Cd laser at 35 mW
excitation power. Low temperature TRPL measurements were
performed at 10 K using time-correlated single-photon count-
ing and a pulsed GaN diode laser operating at a wavelength
of 396 nm as the excitation source. In the EL measurement
system, the current source is Kiethley 238, and the best mea-
surement resolution at 1 nA injection could reach 10 fA with a
accuracy of 0.3%. We can perform a serious of current-voltage
measurement and data storage by Lab View human-machine
control interface. Finally a generic device LIV measurement
by the standard probe station and Kiethley current source will
demonstrate superior power output and efficient droop in our
NPLED device.

III. RESULTS AND DISCUSSION

First step to compare these two material growth methods is
to check their material quality. In order to analyze the detailed
epitaxial layer quality, we used TEM to compare the cross
section between two types of devices in Fig. 5. A comparison
of Fig. 5(a) and 5(b) shows that the dislocation density in the
NPSi sample is reduced much more than that of MPSi’s. The
TDDs for MPSi is estimated to be 2.5 × 1010 cm−2 at the
bottom of the n-GaN layer, and it decreases to 4.6 × 109 cm−2

at the top of the n-GaN layer and 6.2 × 108 cm−2 in the p-GaN

Fig. 5. TEM images of LEDs grown on (a) MPSi and (b) NPSi; (c) and (d)
region of between AlGaN layer and Si substrate for NPSi using g = (0002).

1 µm 1 µm

Fig. 6. Top view CL images on samples of energy for (a) micro-scale and
(b) nano-scale pattered Si substrate.

region. On the other hand, for the epilayer grown on NPSi,
fewer dislocations are observable within the range of view. As
shown in Fig. 5(b), the TDDs at the bottom of the n-GaN layer
is about 1.1 × 1010 cm−2; however, the TDDs at the top of
the n-GaN layer drop down to 5.7 × 108 cm−2, and it is only
8.8 × 107 cm−2 in the p-GaN region. The reduction of TDDs
NPSi over MPSi is about 10 times. Fig. 5(c) and 5(d) are
TEM images are taken at the interface of epilayer/NPSi. As
can be seen in Fig. 5(c), there are many dislocations bent and
terminated in AlGaN layer or near the epilayer/NPSi interface.
As a result, the density of TDDs in the subsequent quantum
well region was much lower.

Next, we will examine our results by CL. CL is a very
important technique when we need non-invasive assessment
of crystal quality. Fig. 6(a) and 6(b) display the plan-view
CL emission images with a 10 kV accelerating voltage at
room temperature. At first glance, MPLED showed more “dead
zone” or black spots than NPLED. These dark areas in the CL
images are regions where minority carriers get consumed by
dislocations due to high non radiative recombination velocity
[20]. The other feature we would like to point out is that the
emission intensity of MPLED is less uniform than NPLED’s.
This was mainly due to indium composition fluctuation and the
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Fig. 7. (a) Cross section CL intensity at nano-scale patterned Si/GaN inter-
face. (b) Average intensity between silicon holes against interpore distance.

phase separation [21], [22]. These CL images suggest that the
pitch between the etched silicon holes might play an important
role since the nano-patterned sample looks much better. To
further investigate how the pitch of nano-patterns affects the
photon emission efficiency, we cleaved through nano-porous
wafers and performed the cross section CL measurement.

The upper half of Fig. 7(a) shows the cross section CL
intensity of NPLEDs’ quantum well region, and it is taken
at the same horizontal location aligned to the nano-scale pat-
terned Si/GaN substrate underneath (bottom half of Fig. 7(a)).
We noticed that CL intensity is much stronger when etched
silicon holes are closer. To quantitatively evaluate this obser-
vation, we plot the average intensity between silicon holes
against interpore distances in Fig. 7(b). When the interpore
distance reduced to 0.2μm (200nm) or less, the integrated
luminescence intensity grows sharply. From previous research
by Sugahara, et. al. [23], the CL efficiency (η) can be related
to sample recombination behavior given by:

η = 1 −
(

2r0

Ld

)2

− 8

L2
d

∫ Ld
2

r0

r exp

(
−r − r0

L p

)
dr (2)

where Ld is the mean dislocation distance, L is the diffusion
length in InGaN, and r0 is the radius in which non-radiative
recombination consumes all carriers (the dark spot). If other
material characteristics is the same and assume uniform exci-
tation, the only factor that can affect the luminescent intensity
is Ld, the mean dislocation distance. So when material has
fewer defects, the efficiency is higher. From the trend of data,
we can reasonably conclude that the higher density of nano-
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pattered Si substrate plotted as a function of 1000/T.

size interpore area bears less dislocation and thus tends to have
strong light emission.

Just like CL can reveal the crystal quality, PL can let us
find out the possible radiative recombination mechanism in
the quantum well region. It has been shown that thermal
quenching of PL intensity can be explained by carriers’
thermal emission out of a confining potential with an activation
energy correlated with the depth of the confining potential
[24]. Therefore, it is expected that the deeper localization
with better confinement should have larger activation energy.
Fig. 8(a) and 8(b) display the temperature dependence of PL
intensity fitted by Arrhenius equation as following [25]:

I (T ) = I0

1 + A exp
(
− Ea

kB T

)
+ B exp

(−Eb
kB T

) (3)

where I(T) is the temperature-dependent PL intensity, I0 is the
PL intensity at 20 K, kB is Boltzmann’s constant, A and B are
the rate constants, and Ea and Eb are the activation energies
for two different nonradiative channels, which correspond to
the low temperature and high temperature regions [26]. For
high temperature region, thermal quenching can be fitted with
activation energy (Eb) 59 and 87 meV for MPLEDs and
NPLEDs, respectively. In particular, the activation energy for
NPLEDs is 47.4 % higher than that for MPLEDs, leading to
a minor overflow of carriers outside the InGaN MQW active
region. The discrepancy should rise from either anisotropic
distribution in the active region or mixture of thermionic
emission from potential minimum to barrier. Based on above
result, the PL-intensity improvement in the NPLEDs can be
attributed to the stronger localization effects and better carrier
confinement in In0.08Ga0.92N/GaN MQW active region [27].

Potential variation affects how easy the carrier can be
confined, and the combining rate can be regarded as how fast
the carriers can recombined. The information about carrier
recombination rate can be obtained from decaying behavior
of photoluminescence. The low temperature TRPL decay for
both samples was shown in Fig. 9. Because the measurement
was carried out at 10K, the influence of the nonradiative
recombination process could be excluded [28]. The TRPL
results can be fitted by a bi exponential decaying function: [29]

I (t) = I1(0) exp

(
− t

τ1

)
+ I2(0) exp

(
− t

τ2

)
(4)

where I(t) is the PL intensity at time t; τ1 and τ2 represent
the characteristic lifetimes of the carriers. The fast decay time
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constant (τ1) usually represents the radiative recombination
of excitons and the relaxation of QW excitons from free or
extended states toward localized states [29], [30]. Our fitting
shows τ1 = 3.2 and 1 ns for MPLEDs and NPLEDs, respec-
tively. The slow decay time (τ2) accounts for communication
between localized states and localized excitons [29], [30]. The
fitting shows τ2 = 9.4 and 3.2 ns for MPLEDs and NPLEDs,
respectively. In both fast and slow constants, NPLEDs’ life-
time is generally shorter than MPLEDs’ at low temperature.
S. Chichibu, et. al. reported the electron-hole pairs in the
potential minima of QWs can be referred to as localized
excitons, and the emission efficiency can still be enhanced
even though the wave function overlap is weakened [31]. In
the case of MPLEDs and NPLEDs, much higher radiative
recombination rate observed in TRPL can be interpreted as
direct evidence of stronger localized confinement in NPLEDs
than MPLEDs, and also an indication of more efficient light-
emitter.

The final trial of this nano-size template is to test the light
emitting efficiency from the real device. LED devices with a
chip size of 350 × 350 μm2 were fabricated on both MPLEDs
and NPLEDs. Fig. 10 shows the forward I-V characteristics
of both samples. At 20 mA forward current, both samples
exhibited diode voltages around 4.7 V. In addition, at the
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reverse bias (shown in the insert plot of Fig. 10), the leakage
current of the NPLEDs is smaller than MPLEDs. Several
types of dislocations can contribute to the reverse-bias leakage
current [32], and one of the most dominant type is the screw
dislocation [32], [33]. The reduction of screw type dislocations
can certainly help to reduce the reverse-bias current, and our
measurement indicates a better crystal quality of LEDs grown
on NPSi substrate, which confirms with TEM results.

Fig. 11 shows EL spectrums as a function of injection
current for MPLEDs and NPLEDs. The emission peak wave-
length of NPLEDs is slightly shorter than MPLEDs’. In our
previous study, we performed Raman backscattering measure-
ment at room temperature. The regular Raman shift of E2
(High) in stress-free GaN layer is around 567.2 cm−1. In this
paper, the E2 (High) shift is 565.4 cm−1 and 564.5 cm−1, for
samples on NPSi and on MPSi, respectively. The deviation of
the E2 (High) peaks from the intrinsic position is proportional
to the residual tensile stress. For GaN, the E2 (High) mode
shifts linearly with stress in 2.9 cm−1/GPa for biaxial stress.
We can thus estimate the tensile stress in NPSi and MPSi are
0.62 GPa and 0.93 GPa, respectively. This indicates that the
LEDs grown on NPSi exhibited lower strain than on MPSi.
Therefore, the LEDs grown on NPSi possess a reduced QCSE.
The related MPSi and NPSi Raman measurement results have
been previously published by Dongmei Deng et. al. [18].
Moreover, we can see EL emission peak wavelength of
MPLEDs exhibits blue shift from 429 nm to 427 nm with
increasing drive current as shown in Fig. 11(a). However, we
obtained almost unshifted EL peak with increasing injection
current. This result indicates that the quantum confined stark
effect (QCSE) does become weaker due to the strain relaxation
in epitaxial layer overgrown on NPSi template [34].

Finally, Fig. 12 shows the light output intensity and nor-
malized external quantum efficiency (EQE) as a function of
forward current density for both samples. The light output-
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current curve of MPLEDs is linear under 20mA/cm2. From
this data, the light output of the MPLED shows an obvious soft
increase of EQE, which is an indication of higher threading
dislocation densities [35], and the roll-over current is much
lower in MPLED. The data from NPLED, however, demon-
strates good material quality with a reduced efficiency droop
and much less soft increase in EQE.

However, it rolls over beyond 20mA/cm2 with a reduced
EQE. The EQE is decreased to 62% of its maximum value
when the current density at 100mA/cm2. In contrast, the
NPLEDs exhibits 20% efficiency droop with increasing the
injection current density to 100mA/cm2. It can be attributed to
reduced polarization field which also echoes to weaker QCSE
under the circumstance of reduced strain in overgrown layers
on NPSi template [36].

IV. CONCLUSION

In conclusion, the optical and electrical properties of LEDs
grown on micro and nano-scale patterned Si substrate were
investigated. We demonstrated a more homogeneous growth
of InGaN/GaN active layers under this nano-scale template
by plan-view and cross-section CL mapping. From tempera-
ture dependent PL and low temperature TRPL measurement,
NPLEDs has better carrier confinement and higher radiative
recombination rate than MPLEDs. On the actual device perfor-
mance, NPLEDs exhibits smaller peak wavelength blue shift,
lower reverse leakage current and decreases efficiency droop
compared with the MPLEDs. The results suggest a weaker
QCSE due to relaxation of strain in the epitaxial layers on
nano-scale patterned substrate, which can be really useful for
the next generation of large area, Si-based heteroepitaxy of
GaN related optoelectronic devices.
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