Fabrication of 150-nm T-Gate Metamorphic AllInAs/GaInAs HEMTs on GaAs Substrates by MOCVD

Haiou Li, Zhihong Feng, Chak Wah Tang, and Kei May Lau

Abstract—Metamorphic AllInAs/GaInAs high-electron-mobility transistors (HEMTs) of 150-nm gate length with very good device performance have been grown by metal–organic chemical vapor deposition, with the introduction of an effective multistage buffering scheme. By using a combined optical and e-beam photolithography technology, submicrometer mHEMT devices have been achieved. The devices exhibit good dc and RF performance. The maximum transconductance was 1074 mS/mm. The nonalloyed ohmic contact resistance was as low as 0.02 Ω·mm. The unity current gain cutoff frequency (fₜ) and the maximum oscillation frequency (fₘ₉ₙ) were 279 and 231 GHz, respectively. This device has the highest fₜ yet reported for 150-nm gate-length HEMTs. Also, an input capacitance to gate–drain feedback capacitance ratio Cₛₛ/Cₐ₉ of 3.2 is obtained in the device.

Index Terms—AllInAs/GaInAs, GaAs, metal–organic chemical vapor deposition (MOCVD), metamorphic high-electron-mobility transistors (mHEMTs).

I. INTRODUCTION

In recent years, there has been an intense interest in the fabrication of GaAs-based high-speed devices for digital and microwave applications by molecular beam epitaxy (MBE) or metal–organic chemical vapor deposition MOCVD. HEMTs based on the lattice-matched InAlAs/InGaAs/InP material system have demonstrated the highest unity current gain cutoff frequency and the highest maximum frequency of oscillation for any transistor [1]. However, although InP-based devices have been shown to have superior performance in higher frequency and power applications, the InP industry has not experienced similar demand and growth. The downturn of the photonics and power applications, the InP industry has not experienced any transistor [1]. However, although InP-based devices have been shown to have superior performance in higher frequency and power applications, the InP industry has not experienced similar demand and growth. The downturn of the photonics industry, a major driving force behind the InP-based devices and circuits, did not help. Without large-volume consumption, the cost of InP substrates and chip manufacturing remains very expensive, making InP-based devices less competitive in the market place.

The emergence of metamorphic devices in the past few years shed light on this new approach of improving RF device performance at a lower cost. There are different buffering schemes on GaAs substrate allowing the growth of structure for high-quality RF devices traditionally grown on InP substrates. MBE has been extremely successful in developing metamorphic technology. There have been many reports on mHEMTs and mHBTs grown by MBE, with device results comparable to those on InP substrates [2], [3]. Metamorphic technology by MOCVD lags behind. There are many technological challenges to be overcome due to the large density of threading dislocation defects in the epilayers resulting from the lattice mismatch and difference in thermal expansion coefficients between GaAs substrate and grown layers. Although growth of structures for RF devices by MOCVD has always been at a slower development pace than MBE, the commercial success of few epitaxial material suppliers using MOCVD demonstrates the manufacturing advantages of MOCVD. One of the difficulties of growing metamorphic RF devices by MOCVD is to suppress the buffer leakage. Slight buffer leakage tends to degrade the RF operation of HEMTs with parasitic components [4]. With a 4% lattice mismatch between InP and GaAs, the common metamorphic growth technique is to grow a thick buffer with graded alloy compositions or super lattices. Unintentional impurities incorporated in these layers decrease the resistivity of the buffer, resulting in devices that cannot be pinched off. We have developed a growth technique of a comparatively thin multistage buffer to obtain high resistivity in the buffer layer leading to good device performance. This sets the stage for potential high-volume production of mHEMTs by MOCVD.

II. MATERIAL GROWTH AND DEVICE FABRICATION

The wafers were grown by MOCVD on 4-in (001) oriented semi-insulating GaAs substrates in an Aixtron AIX-200/4 MOCVD system. The composite buffer stack consists of a low-temperature (LT) InP nucleation layer (110 nm), high-temperature (HT) undoped InP (650 nm) as buffer 1, LT-InP:C (100 nm) as buffer 2, and undoped LT-Al₀.₄₉In₀.₅₁As (200 nm) and HT-Al₀.₄₉In₀.₅₁As (100 nm) as buffer 3 and buffer 4, respectively; A 25-nm undoped Ga₀.₄₇In₀.₅₃As channel was grown on the buffer layer and is followed by a 5-nm undoped Al₀.₄₉In₀.₅₁As spacer layer, a Si-doping plane, a 25-nm undoped Al₀.₄₉In₀.₅₁As Schottky contact layer, and a 15-nm Ga₀.₄₇In₀.₅₃As cap layer. The metamorphic layer structures grown on GaAs substrates have been characterized and demonstrated with good electrical properties in our previous works [5], [6]. With the cap layer removed, a room-temperature...
2DEG electron concentration of 4.6×10^{12} cm$^{-2}$ and a mobility of 8740 cm2/V-s were measured for this heterostructure. The sheet resistance of the mHEMT wafer is 156 Ω/sq. The LT grown InP:C and InAlAs show high sheet resistivity, greater than 10^5 Ω/sq. The root mean square (rms) value of the surface roughness is 2.9 nm across a scan area of 20×20 μm2. Fig. 1 shows a cross-sectional TEM micrograph of the whole structure including the multistage buffer and the mHEMT epilayer. In the photograph, the interfaces of all layers are clearly shown, and the thickness of each layer is in fair agreement with the designed structure. A, B, and C means GaAs, InP, and AlInAs buffer layers. Some 60$^\circ$ threading dislocations could be observed in the composite buffer.

The devices were fabricated with mesa isolation and six-layer metal system (Ni/Ge/Au/Ge/Ni/Au) ohmic contacts. Using the transmission line model, the nonalloyed ohmic contact resistance R_c was as low as 0.02 $\Omega \cdot$ mm, which is due to higher doping concentration of cap layer and optimization of ohmic contact metal systems. T-gate devices of 150 nm were fabricated by a two-stage electron beam lithography process as shown in Fig. 2. SiO$_2$ (10 nm) and SiN$_x$ (100 nm) films were deposited by PECVD to define the gate footprint and to mechanically support the T-shaped gate. After etching of the SiN$_x$ film with CF$_4$/O$_2$ reactive ion etching, the gatehead pattern was formed by a bilayer PMMA/ PMMA-MAA process. The high selectively citric-acid-based etchant was used to remove the highly doped GaInAs cap layer in order to stack T-shaped gates on the AlInAs barrier layer. Finally, Ti/Pt/Au was deposited as the Schottky gate contact.

DC characterization of the 150-nm gate-length mHEMTs was performed using an Agilent 4155 semiconductor parameter analyzer. The dc current–voltage characteristics of a typical AlInAs/GaInAs mHEMT with 150-nm gate length are shown in Fig. 3. The maximum drain current measured at $V_{GS} = 0.4$ V and $V_{DS} = 1.5$ V was 1130 mA/mm. Fig. 4 shows the transfer characteristics. The maximum extrinsic transconductance is 1074 mS/mm at $V_{GS} = -0.25$ V and $V_{DS} = 1.0$ V. The device is a depletion-mode transistor with a threshold voltage V_{th} of around -0.8 V. The threshold voltage of mHEMT device was not uniform, which shifts from -1.0 to -0.8 V due to larger surface roughness ($\text{rms} > 2.9$ nm, as across a scan area of 20×20 μm2). It will be further improved by optimizing the growth of mHEMT material. The device with composite buffer stack growth exhibited good pinchoff characteristics and little buffer leakage current, which will be further improved by optimizing the growth of buffer layer.

IV. RF PERFORMANCE

On-wafer RF measurements were carried out on a 150 nm \times 100 μm mHEMT using a Cascade Microtech probe station and an HP8722 network analyzer from 0.1 to 39.9 GHz. Open on-wafer deembedding structures were used to determine the parasitic capacitance of the probe pads and to deembed the short-circuit current gain $|h_{21}|$. The cutoff frequency f_T was obtained from the extrapolation of $|h_{21}|$ to unity by using a -20 dB/dec slope, and the maximum frequency of oscillation f_{max} was extrapolated from the MSG/MAG. Fig. 5 shows the current gain and MSG/MAG as a function of frequency. f_T is 279 GHz, which is the highest f_T yet reported for similar device, and f_{max} is 231 GHz. The optimum bias condition for
where \(V_{f} \) be \(V_{\text{max}} \), unity current gain cutoff frequency is determined to be \(f_{\text{max}} \) and \(f_{T} \) as shown in Table II. They are very important RF parameters and have a strong influence on the value of \(f_{\text{max}} \). \(C_{g} / C_{g0} \) and \(\mu \) were determined by equivalent circuit modeling of measured 10-30-GHz S-parameters (\(V_{GS} = -0.6 \) V and \(V_{DS} = 1.0 \) V). The device has an output conductance (\(G_{ds} \)) of 14.8 mS, and \(G_{m} / G_{ds} \) is 7.3. The input capacitance to gate–drain feedback capacitance ratio \(C_{g} / C_{g0} \) is 3.2.

V. CONCLUSION

In conclusion, we have successfully grown metamorphic AllnAs/GaInAs HEMTs with good device performance by using the MOCVD technique through the introduction of a multistage buffer. A depletion-mode mHEMT exhibits the maximum transconductance of 1074 mS/mm. With 150-nm gate-length devices, \(f_{T} \) and \(f_{\text{max}} \) of 279 and 231 GHz, respectively, were obtained. The result is comparable to the structure of mHEMT grown by MBE. We believe that these results are the best reported for MOCVD-grown mHEMTs and sufficient for high-frequency high-speed applications. With the anticipated demand of commercial high-speed and high-performance transistors, mHEMT technology by MOCVD is very attractive for manufacturing.

REFERENCES

[1] Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic \(\text{In}_{0.52}\text{Al}_{0.48}\text{As} / \text{In}_{0.7}\text{Ga}_{0.3} \) as HEMTs with an ultrathin \(f_{T} \) of 562 GHz,” IEEE Electron Device Lett., vol. 23, no. 10, pp. 573–575, Oct. 2002.

